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Abstract: - In this paper, the stability robustness is considered for linear time invariant (LTI) fractional order 
systems with time delay against delay uncertainties. The complexity arises due to the exponential type 
transcendental terms and fractional order in their characteristic equation. We show that this procedure 
numerically reveals all possible stability regions exclusively in the space of the delay .Using the approach 
presented in this study, we can find all the locations where roots cross the imaginary axis. Finally, the concept 
of stability as a function of time delay is described for a general class of linear fractional order systems with 
multiple commensurate delays. Several numerical examples are provided to demonstrate the effectiveness of 
the proposed methodology. 
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1 Introduction 
It is known that the presence of delay many cause 
poor performance and/or instability in a dynamical 
system. Therefore, time-delayed systems play 
significant roles in theoretical as well as practical 
fields; and this influence can be observed in 
numerous research articles written on various 
problems that involve this class of systems [1-6]. 
Fractional differential equations have gained 
considerable importance due to their application in 
various sciences, such as viscoelasticity, 
electroanalytical chemistry, electric conductance of 
biological systems, modeling of neurons, diffusion 
processes, damping laws, rheology, etc. Fractional 
order differential equation is represented in 
continuous-time domain by differential equations of 
non integer-order. Moreover, time delay is often 
present in real processes due to transportation of 
materials or energy. Therefore, most fractional 
systems may contain a delay term, such as fractional 
order neutral systems or some other fractional order 
delay systems (see [20,22] and the references cited 
in it). The characteristic function of a fractional-
delay system involves exponential type 
transcendental terms, so a fractional delay system 
has in general an infinite number of characteristic 
roots. This makes the stability analysis of fractional-
delay systems a challenging task. However, for 
fractional order dynamic systems, it is difficult to 
evaluate the stability by simply examining its 

characteristic equation either by finding its 
dominant roots or by using other algebraic methods. 
At the moment, direct check of the stability of 
fractional order systems using polynomial criteria 
(e.g., Routh’s or Jury’s type) is not possible, 
because the characteristic equation of the system is, 
in general, not a polynomial but a pseudopolynomial 
function of fractional powers of the complex 
variable s. 

The researchers of [7] and [8] may be the pioneer 
to consider stability of the fractional order time 
delay system with single-delay. They have 
developed the Ruth-Hurwitz criteria for analyzing 
the stability of some special delay systems to those 
involve fractional power s . 

One of the important and basic things about each 
of the dynamical systems is the stability 
investigation. With respect to systems with delay, 
we’d like to study that how this stability property 
could behave, if we increased the time delay. It is 
known that an interesting phenomenon, namely 
stability windows, might happen. There has been a 
large effort to deal with this problem, as can be seen 
by the large quantity of articles dealing with it for 
the standard case; see. [9, 10,21,23], and many 
others. Recently, [11] has used numerical methods 
to investigate this subject in fractional order delay 
systems. 

Bonnet and Partington introduced necessary and 
sufficient conditions for BIBO stability of the 
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retarded fractional order delay systems and 
sufficient conditions for some neutral types [12]. 
Also, they studied necessary and sufficient 
conditions for H∞ -stability (a weaker notation than 
BIBO stability) for a significant case of neutral type 
fractional order delay systems [13]. From the 
numerical analysis point of view, the effective 
numerical algorithms to check BIBO stability of 
fractional order delay systems have been discussed 
in [11] and [14]. In [15], a numerical method with 
complicated calculations based on the Cauchy’s 
integral theory has been proposed for testing the 
stability of such systems. Some numerical 
techniques based on the Lambert W function have 
been presented in [16, 17] for the investigation of 
stability of these systems, where the rightmost 
characteristic root on the first Riemann sheet can be 
expressed explicitly in terms of Lambert W 
function. 

In the present work, an exact method for the 
BIBO stability analysis of a large class of fractional 
order delay systems has been proposed, which is 
able to determine all the possible stability regions in 
the parametric space of these systems as a function 
of time delay. The main idea of this strategy has 
been adopted from [11], whose authors have studied 
the stability of integer order time-delayed systems. 
The rest of the present article has been organized as 
follows. Section 2 includes the necessary 
explanations and assumptions and also the stability 
test of these systems. In section 3, an exact method 
which expresses the stability regions as a function of 
delay has been presented. In section 4, some 
examples that demonstrate the effectiveness of the 
proposed approach have been described; and section 
5 concludes the article. 

 
 
2 Problem Formulation 
Standard notation has been used throughout the 
article. The set of natural numbers is denoted by ` , 
whereas N`  denotes the set of its first N elements 

(i.e., { }1, ,N N=` … ). ( ),+ −^ ^ ^  is the set of 

complex numbers (with strictly positive, and strictly 
negative real parts), and 1j = −  is the imaginary 
unit . For ,z z∈^  denotes its complex conjugate, 
and z∠ , ( )zℜ  and ( )zℑ  define the argument 

(taken here from ( ],π π− ), the real part and the 

imaginary part of z . ( ),+ −\ \ \  denotes the set of 

real numbers (larger or equal to zero, smaller or 
equal to zero). 

Consider a fractional order system with the 
following characteristic equation: 

( ) ( )
0

,
k

N
ks

k
C s p s eα ττ −

=

= ∑  (1) 

where parameter τ  is non-negative, such that 
τ +∈\ ; ( )kp s α for Nk ∈`  are polynomials in  

s α  (where ( )0,1α ∈ ). Note that the zeros of 
characteristic equation (1) are in fact the poles of the 
system under investigation. We find out from [14] 
that the transfer function of a system with a 
characteristic equation in the form of (1) will be H∞ 
stable if, and only if, it doesn’t have any pole at 
( ) 0sℜ ≥  (in particular, no poles of fractional order 

at 0s = ). 
For fractional order systems, if a auxiliary 

variable of s ας =  is used, a practical test for the 
evaluation of stability can be obtained. By applying 
this substitution in characteristic equation (1), the 
following relation is obtained: 

( ) ( ) 1

0
,

N
k

k
k

C p e
ατς

ς ς τ ς −

=

= ∑  (2) 

For this new variable, the stability region of the 
original system is not expressed as the right half-
plane, but as the region described below: 

2
πας∠ ≤  (3) 

 
with ς ∈^  , which the stable region has been 

displayed by shaded regions in Figure (1). 
 

 
 
Fig. 1. The Stability Regions (Shaded) for linear 
fractional order systems 
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Note that under this transformation, the imaginary 
axis in the s-domain is mapped into the line 

 

2
πας∠ = ±  (4) 

 
in the ς-domain, and therefore a solution 
* * 2ς ς πα= ∠±  implies that the original system 

has a purely imaginary solution of the type 
 

1
* *s j

α
ς

−

= ±  (5) 

 
Let us assume that ; s jω= ± or in other words, 

2js e πω ±=  are the roots of characteristic equation 
(1) for a τ +∈\ . Then for the auxiliary variable, the 
roots are defined as follows: 

 
2js eα α πας ω ±= =  (6) 

 

Therefore, with the auxiliary variable s ας =  , 
there is a direct relation between the roots on the 
imaginary axis for the s-domain with the ones 
having argument 2πα±  in the ς-domain. 

 
 

3 Problem Solution 
This is well known that one of the most 

important tools in the stability analysis of the 
systems is to use the location of the roots of system 
or root-locus method. About fractional-order delay 
systems, since there is exponential type 
transcendental terms in the characteristic equation 
and also because of having the fractional feature of 
the system, drawing the root-locus of the fractional 
delay systems makes the problem much more 
challenging compared to integer order systems. 
Some of the researchers have tried to present some 
algorithms to be able to draw the location of the 
roots. As an example, J.A. Tenreiro Machado in 
[19] and Fioravanti et al in [11]. But unfortunately, 
none of these algorithms could not properly display 
the root-locus of the fractional delay systems. 
We’ve tried to develop the existed algorithms, 
which are known in the resources, and also to draw 
the stability map and location of the roots correctly. 
 
 

3.1 Crossing position 
The main objective of this section is to present a 

new method for the evaluation of stability and 
determination of the unstable roots of a fractional 
order time delay system. A necessary and sufficient 
condition for the system to be asymptotically stable 
is that all the roots of the characteristic equation (1) 
lie in the left half of the complex plane.The 
proposed method eliminates the transcendental term 
of the characteristic equation without using any 
approximation or substitution and converts it into a 
equation without the transcendentality such that its 
real roots coincide with the imaginary roots of the 
characteristic equation exactly. 

Based on the D-subdivision method, the number 
of unstable roots of a characteristic equation is 
invariant in some distinct regions of one-
dimensional parameter space of time delay and the 
characteristic equation has at least one pair of purely 
imaginary roots at the boundary of these regions. 
After finding the boundaries and calculating the 
direction of imaginary roots variation, the number of 
unstable roots in each distinct interval is determined. 

 
 

3.2 Single-Delay case 
When there exists only a single delay in the system, 
the characteristic equation (1) becomes. 
 

( ) ( ) ( )0 1, sC s p s p s eα α α ττ −= +  (7) 

 
If for some finite ( ), , 0C s ατ τ =  has root on the 

imaginary axis at cs jω=  (where subscript c refers 
to ”crossing” the imaginary axis), then the equation 

( )( ) , 0C s α τ− =  must have the same root for the 

same value of τ  because of the complex conjugate 
symmetry of roots. Therefore, looking for roots on 
the imaginary axis reduces to finding values of τ  
for which ( ), 0C s α τ =  and ( )( ) , 0C s α τ− =  

have a common root. That is 
 

 
( ) ( ) ( )
( ) ( ) ( )

0 1

0 1

, 0

( ) , ( ) ( ) 0

s

s

C s p s p s e

C s p s p s e

α α α τ

α α α τ

τ

τ

−= + =

− = − + =

 (8)   

Let define variable ς  that is complex conjugate 

of auxiliary variable 2je π αας ω=  as follows: 
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( )2j js e eπ α π αα ας ω ς− −= − = =  (9)   

 
Where 2je π αας ω= . Equation (8) can be 

written as follows 
 

( ) ( )

( ) ( )
0 1

0 1

0

0

p p e

p p e

α

α

α τς

α α τς

ς ς

ς ς

−+ =

+ =
 (10)   

 
By eliminating the exponential term in (10), we 

get the following polynomial: 
 

( ) ( ) ( ) ( )0 0 1 1 0p p p pς ς ς ς− =  (11)   

 
Please note that transcendental characteristic 

equation with single delay given in (10) is now 
converted into a equation without transcendentality 
given by (11) and its positive real roots coincide 
with the imaginary roots of (7) exactly. The roots of 
this equation may easily be determined by standard 
methods. Depending on the roots of (11), the 
following situation may occur: 

 
1. The equation of (10) does not have any 

positive real roots, which implies that the 
characteristic equation (6) does not have 
any roots on the jω -axis. In that case, the 
system is stable for all 0τ ≥ , indicating 
that the system is delay-independent stable. 

2. The equation of (10) has at least one 
positive real root, which implies that the 
characteristic equation (6) has at least a pair 
complex eigenvalues on the 0τ ≥ -axis. In 
that case, the system is delay - dependent 
stable. 

 
The roots of this equation may easily be 

determined by standard methods. For a positive real 
root cω , the corresponding value of delay margin τ  
can be easily obtained using (7) as: 

 

( )
( )

( )( )
( )

2

0

1

0

1

1 2

j

c c

e

p
p k

p
p π

α ας ω

ς
ς πτ

ω ως
ς

=

⎛ ⎞⎡ ⎤⎜ ⎟ℑ⎢ ⎥⎜ ⎟⎣ ⎦= +⎜ ⎟⎡ ⎤−⎜ ⎟ℜ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 (12)   

For the positive roots of (11), we also need to 
check if at cs jω= , the root of characteristic 
equation (7) crosses the imaginary axis with 
increasing τ . This can be determined by the sign of 
[ ]ds dτℜ . With these values in hand, we will be 

able to calculate the direction of crossing from the 
left half plane to the right one, which we will denote 
as a destabilizing crossing, or from the right to the 
left, meaning this is a stabilizing crossing. Notice 
that the use of the expressions destabilizing and 
stabilizing crossings means only that a pair of poles 
is crossing the imaginary axis in the defined 
direction, and not that the system is turning unstable 
or stable, respectively. For that, it is necessary to 
know the number of unstable poles before the 
crossings. 

 
 

3.2 Commensurate-Delay case 
 
The method given for the single-delay case could 

be easily extended to the stability analysis of the 
fractional order system with multiple commensurate 
time delays. The characteristic equation of such a 
system is given by (1). Similar to the single-delay 
case, if the characteristic equation (1) has a solution 
of cs jω= then ( )( ) , 0C s α τ− =  will have the 

same solution. 
 

( )( ) ( )( )
0

,
k

N
ks

k

C s p s eα α ττ
=

− = −∑  (13) 

 
Characteristic equation (13) can be written in 

terms of the auxiliary parameter ς  as: 
 

( ) ( )
0

,
k

N
k

k

C p e
αα α ς τς τ ς

=

= ∑  (14) 

 
Recall that in the single-delay case, the 

transcendental term and the time delay τ  are 
eliminated. In this case, the purpose is the same. A 
recursive procedure should be developed to achieve 
that purpose. Therefore, let us define 

 

( ) ( ) ( ) ( )
( ) ( )

1

0
0

1 , 0

n
k

k n n k
k

p p p p e

C

ας τς ς ς ς

ς τ

−

−
=

−⎡ ⎤⎣ ⎦

= =

∑
 (15) 
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Then, we have 
 

( ) ( ) ( ) ( )
( ) ( )

1

0
0

1 , 0

n
k

k n n k
k

p p p p e

C

ας τς ς ς ς

ς τ

−

−
=

−⎡ ⎤⎣ ⎦

= =

∑
 (16) 

 
It should be observed from equations (15) and 

(16) that if cs jω=  is the solution of equations (1) 
and (12) for some τ , then it must be a solution of 
the following augmented characteristic equations 

 

( ) ( ) ( )

( ) ( ) ( )

1
1 (1)

0

1
1 (1)

0

, 0

, 0

n
k

k
k

n
k

k
k

C p e

C p e

α

α

ς τ

ς τ

ς τ ς

ς τ ς

−

=

−

=

= =

= =

∑

∑
 (17) 

 
Where 
 

( ) ( ) ( ) ( ) ( )(1) (1) (1) (1) (1)
0k k n n kp p p p pς ς ς ς ς−= −

 (18) 

Note that the characteristic equations (17) are of 
commensuracy degree of (n-1). We can easily repeat 
this procedure to eliminate commensuracy terms 
successively by defining a new polynomial 

 

( )
( ) ( ) ( ) ( )

( 1)

( ) ( ) ( ) ( )
0 0

r
k

r r r r
n r n r k

p

p p p p

ς

ς ς ς ς

+

− − −

=

−
(19) 

 
and an augmented characteristic equation 
 

( ) ( ) ( )( )

0

, 0
n r

r r k
k

k

C p e
ας τς τ ς

−
−

=

= =∑  (20) 

 
By repeating this procedure n times, we eliminate 

the highest degree of commensuracy terms and 
obtain the following augmented characteristic 
equation 

 
( ) ( ) ( )( )

0 0n nC pς ς= =  (21) 

 
Where 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1 1
0 0 1 1 0

n

n n n n

p

p p p p

ς

ς ς ς ς− − − −

=

− =
 (22)   

 
It should be emphasized that that if cs jω= is the 
solution of (1) for some τ , then it is also a solution 
of (20) since the imaginary roots of the original 
characteristic equation (1) are preserved during the 
manipulations. If we substitute ( )je π ας ς−=  and 

2je π αας ω=  in (22), we get the following 
equation in ω  
 

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( )) 2

1 1
0 0

1 1
1 1 0

j

n nj

n n j

e

D p e p

p p e
π αα

π α

π α

ς ω

ω ς ς

ς ς

− −−

− − −

=

=

− =

 (23)   

 
One can easily notice that (22) is the generalization 
of (11) and allows us to determine the imaginary 
roots of charactristic equation (1), if there exists 
any. The corresponding value of time delay is then 
computed by 
 

( ) ( )
( ) ( )
( ) ( )( )
( ) ( )

2

1
0

1
1

1
0

1
1

1 2

j

n

n

n
c c

n

e

p
p k

p

p π
α ας ω

ς
ς πτ

ω ως

ς

−

−

−

−

=

⎛ ⎞
⎡ ⎤⎜ ⎟

ℑ⎢ ⎥⎜ ⎟
⎢ ⎥⎣ ⎦⎜ ⎟= +⎜ ⎟⎡ ⎤−⎜ ⎟⎢ ⎥ℜ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 (24)   

 
The whole ω  values, for which s jω=  is a root 

of equation (1) for some non-negative delays, is 
defined as the crossing frequency set. 

 

( ){ }, 0 ,C s for someω τ τ+ +Ω = ∈ = ∈\ \  (25) 

 
This class of systems exhibits only a finite 

number of possible imaginary characteristic roots 
for all τ +∈\  at given frequencies. And this 
method detected all of them. Let us call this set 
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{ } { }1 2, , ,c c c cnω ω ω ω= …  (26) 

 
where subscript c  refers to 'crossing' the 

imaginary axis. Furthermore to each cmω , 
1, ,m n= …  correspond infinitely many, 

periodically spaced τ  values. All this set 
 

{ } { }1 2, , , 1, ,m m m m m nτ τ τ τ ∞= =… …  (27) 

 
Where , 1 , 2m k m k mτ τ π ω+ − =  is the apparent 

period of repetition. 
 
 
3.3 Direction of crossing 

After the crossing points of characteristic 
equation (1) from the imaginary axis are obtained, 
the goal now is to determine whether each of these 
root crossings from the imaginary axis is a 
stabilizing cross or a destabilizing cross. As it was 
shown in [11], this is constant with respect to 
subsequential crossings , and therefore it is denoted 
as root tendency. Assume that ( ),s τ  is a simple 

root of ( ), 0C s τ = . The root sensitivities 
associated with each purely imaginary characteristic 
root jω , with respect to τ  is defined as 

 (28) 

( )

( ) ( ) ( )( )
1

1

s

s j
s j

s j

N
sk

k
k

N
sk

k k
k s j

CdsS Cd s

s q s e

p s q s q s e

τ ω
ω

ω

α τ

α α α τ

ω

τ
τ

τ

=
=

=

−

=

−

= =

∂
∂= = −

∂
∂

=
′ ′+ −

∑

∑

A

A

 

 
 

Here, ( )p s α′  and ( )q s α′A  denote the derivative 

of the polynomials ( )p s α  and ( )q s α
A  in s 

respectively. The root tendency is given by 
It must be noted that the root tendency is 

independent of time delayτ . This implies that even 
though there is an infinite number of values of τ  
associated with each value of cω that make 

( ), 0cC jω τ = . 

( )( )

2

2

2

1

2

sin cos
2 2

cm

cm

cm

cm

s

s j

s j

e

s j

e

j

s j

e

Root Tendency sign S

ds dsign
dv d

dsign
d

dsign je
d

sign j

π
α α

π
α α

π
α α

τ ω

ω

ς ς ω

α

ω

ς ς ω

π
α

ω

ς ς ω

ς
τ

ςς
τ

ς
τ

π π
α α

±

±

±

=

=

= =

−

=

= =

−

=

= =

= ℜ

⎛ ⎞⎛ ⎞= ℜ ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= ℜ ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= ℜ ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞= ℜ +⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣ 2

2

2

sin cos
2 2

tan
2

cm

e

e

e

d
d

d dsign
d d

d dsign
d d

π
α α

π
α α

π
α α

ς ω

ς ω

ς ς ω

ς
τ

π ς π ς
α τ α τ

π ς ς
α τ τ

±

±

±

=

=

= =

⎛ ⎞⎛ ⎞
×⎜ ⎟⎜ ⎟⎥⎜ ⎟⎦⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ℜ − ℑ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ℜ −ℑ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (29) 

 
If it is positive, then it is a destabilizing crossing, 

whereas if it is negative, this means a stabilizing 
crossing. In case the result is 0, a higher order 
analysis is needed, since this might be the case 
where the root just touches the imaginary axis and 
returns to its original half-plane. Notice that root 
tendency represents the direction of transition of the 
roots at cjω as τ increases from mk ετ −  to mk ετ +  , 
0 1ε< ≤ . 

 

s
s jsign S ωτ
τ
=

⎛ ⎞⎛ ⎞ℜ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (30) 

 
Is independent of k . Notice that for those given 

values, the exponential term 
 

2sk j j k j ke e e eτ θ π θ− − − −= =A A  (31) 

 
is independent of A .  
Now having the cross points, their corresponding 
infinitely time delays, and root tendency of each 
time delay, the number of unstable roots in the 
regions subdivided by mkτ can be calculated based 
on the D-subdivision method. To make a complete 
picture of the stability mapping for any fractional 
delay system, mkτ is sorted from smallest to largest 
value. The number of unstable roots in each region 
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between two successive time delays changes by 
2RT if  0ω ≠ , and by RT if  0ω = . 
Undoubtedly, after a specific value of time delay, 
the number of unstable roots cannot be zero and the 
calculation should be stopped. 
 
 
4 Numerical Example 
We present three example cases, which display all 
the features discussed in the text. 
 
 

Example 1: This example has been taken from 
[7] and [15]. Consider the following linear time-
invariant fractional order system with one delay: 

  

 (32) 

( ) ( ) ( ) ( )
( )

3 2

1

2

, 1.5 4

8 1.5 s

C s s s s

s e τ

τ

−

= − +

+ −
 

 
This system has a pair of poles ( 8s j= ± ) on the 

imaginary axis for 0τ = . A very involved 
calculation scheme based on Cauchy’s integral has 
been used in [15] to show that this system is 
unstable for 0.99τ = , and stable for 1τ = . Our 
objective in this example is to find all the stability 
windows based on the method described in this 
article for this system. 

 Applying the first part of the algorithm, we can 
see that 

 

1

2

8 0.7854
6.6248 0.0499 0.9485

k
k

ω τ
ω τ

= → =
= → = +

 (33) 

 
By applying the criterion expressed in the 

previous section, it is easy to find out that a 
destabilizing crossing of roots has occurred at 

0.7854kτ =  for 8s j= ±  and a stabilizing 
crossing has taken place at 0.0499 0.9485kτ = +  
for 6.6246s j= ± , for all values of 

{ }0,1, 2,...k ∈ . Therefore, we will have 5 stability 
windows as follows: 0.0499 0.7854τ< < , 
0.9983 1.5708τ< < , 1.9486 2.3562τ< < , 
2.8953 3.1416τ< <  and 3.8437 3.9270τ< < , 
which agree with the results presented by [7] and 
[11]. 

Note that at 3.927τ = , an unstable pair of poles 
crosses toward the right half-plane, and before this 
unstable pole pair can turn to the left half-plane at 

4.7922τ = , another unstable pair of poles goes 
toward the right half-plane at 4.7124τ = ; and thus, 
the system cannot recover the stability. 

In Table 1, the stability map of system defined via 
(32) is given. The number of unstable roots in each 
interval of unstable region has been determined as 
we 

 
 
Table 1: Stability Regions (Shaded) for Example1 
τ ( )rad sω

 

Root 
Tendenc

y 

Number of 
unstable roots 

0 8 + 2 
    

0.0498 6.6248 -  
   0 

0.7853 8 +  
   2 

0.9938 6.6248 -  
   0 

1.5707 8 +  
   2 

1.9467 6.6248 -  
   0 

2.3561 8 +  
   2 

2.8952 6.6248 -  
   0 

3.1415 8 +  
   2 

3.8437 6.6248 -  
   0 

3.9269 8 +  
   2 

4.7123 8 +  
   4 

4.7922 6.6248 -  
# #  #

 
 
To get a better understanding of the properties of 

this system, its root-loci curve [19] has been plotted 
as a function of delay in Fig. 2. The color spectrum 
in the “color bar” indicates the selected τ ; dark 
blue designates 0τ = , and dark red is for 3.9τ = . 
Since 3.9τ =  is within the last stability window, 
we know in advance that the system will be stable 
for this amount of delay. 
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Fig. 2. Root-loci for C1(s,τ) until τ=3.9 

 
Example 2: This example comes from [18]. 

Consider the following fractional order system: 
 

( ) ( )( )
( )

2 , 2 1 10

5 5 s

C s s s s

s e τ

τ

−

= + +

+ +
 (34) 

 
This system has no unstable pole for 0τ =  (in 

fact, it has no pole in the physical Riemann sheet). 
By applying the previously described method, it is 
realized that the crossing through the imaginary axis 
occurs at 3.2511598  9.9250867kτ = +  and for 

0.633061ω = , which this crossing is a 
destabilizing crossing, and it means that the only 
stability window for this system is 
0 3.2511598τ< < . In Table 2, the stability map of 
system defined via (34) is given. The number of 
unstable roots in each interval of unstable region has 
been determined as we 

 
Table 2: Stability Regions (Shaded) for Example2 
τ  ( )rad sω

 

Root 
Tendenc

y 

Number of 
unstable roots 

0    
   0 

3.25116 0.63306 +  
   2 

13.17624 0.63306 +  
   4 

23.10132 0.63306 +  
#  #   #

 
To get a better understanding of the properties of 

this system, its root-loci curve has been plotted as a 
function of delay in Fig. 3.  
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Fig. 3. Root-loci for C2(s,τ) until τ=3.5  

 
The color spectrum indicating the changes of τ  

from 0.322988τ =  (dark blue) to 3.5τ =  (dark 
red) has been illustrated in the “color bar”. 

 
Example 3: Consider the following fractional 

order system with 2 delays [15]: 
 

( ) ( )5 6 1 2 1 3 0.5s sC s s s s e e− −= + + +  (35) 

 
It has been demonstrated in [15] that this system 

is stable. Let’s change system (35) to the following 
form [13]: 

 

( ) ( )5 6 1 2 1 3 2
3 , s sC s s s s e eτ ττ − −= + + +  (36)   

 
 Now we evaluate the stability of this system for all 
the values of τ  and also study the stability for 

0.5τ = . 
    By examining system (36) for 0τ = , we find out 
that for this value, it has no pole in the physical 
Riemann sheet and thus, the system is stable without 
delay. In view of relations (12) and (36)  we obtain 
 

1

2

1 2.3562 6.2832
1 2.6180 6.2832

k
k

ω τ
ω τ

= → = +
= → = +

 (37) 

 
As is observed, the crossing of the imaginary axis 

for 2.3562 6.2832kτ = +  and 
2.6180 6.2832kτ = +  occurs at s j= ± , and both 

of these are destabilizing crossings; and since the 
system is stable for 0τ = , the only stability window 
for this system is 0 2.3562τ≤ < ; and since 

0.5τ =  falls within this window, we can be sure 
that the original system ( )C s  is stable. 
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Fig. 4. Root-loci for C3(s,τ) from τ=0.1 until τ=3  

 
The obtained stability window matches the results 

presented in [15] and [11], which have used the 
numerical method to analyze this system. 

In Fig. 4, the root-loci curve of this system for the 
changes of τ  from 0.1τ =  (dark blue) to 3τ =  
(dark red) has been presented for a better perception 
of the system. 
 
 
5 Conclusion 

In this paper, a new method for calculating 
stability windows and location of the unstable poles 
is proposed for a large class of fractional order time-
delay systems. As the main advantages, we just deal 
with polynomials of the same order as that of the 
original system. and the use of auxiliary variable ς, 
the crossing points through the imaginary axis, and 
their direction of crossing, were determined. Then, 
system stability was expressed as a function of 
delay, based on the information obtained from the 
system. According to the infinitely countable time 
delays corresponding to each crossing point, the 
parametric space of τ is discretized to investigate 
stability in each interval. The number of unstable 
roots can be calculated with root tendency of each 
crossing point on the interval boundaries. Based on 
the proposed method, an upper bound for time delay 
is determined so that the system would not be stable 
any more for larger time delays. Finally, several 
examples were presented to highlight the proposed 
approach. 
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